Metadata-Version: 2.1 Name: slicer Version: 0.0.8 Summary: A small package for big slicing. Home-page: https://github.com/interpretml/slicer Author: InterpretML Author-email: interpret@microsoft.com Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Classifier: Programming Language :: Python :: 3.11 Classifier: Programming Language :: Python :: 3.12 Classifier: Development Status :: 3 - Alpha Classifier: License :: OSI Approved :: MIT License Classifier: Operating System :: OS Independent Requires-Python: >=3.6 Description-Content-Type: text/markdown License-File: LICENSE # slicer [alpha] ![License](https://img.shields.io/github/license/interpretml/slicer.svg?style=flat-square) ![Python Version](https://img.shields.io/pypi/pyversions/slicer.svg?style=flat-square) ![Package Version](https://img.shields.io/pypi/v/slicer.svg?style=flat-square) ![Build Status](https://img.shields.io/azure-devops/build/ms/interpret/405/master?style=flat-square) ![Coverage](https://img.shields.io/azure-devops/coverage/ms/interpret/405/master.svg?style=flat-square) ![Maintenance](https://img.shields.io/maintenance/yes/2021.svg?style=flat-square) *(Equal Contribution) Samuel Jenkins & Harsha Nori & Scott Lundberg* **slicer** wraps tensor-like objects and provides a uniform slicing interface via `__getitem__`.
It supports many data types including:    [numpy](https://github.com/numpy/numpy) | [pandas](https://github.com/pandas-dev/pandas) | [scipy](https://docs.scipy.org/doc/scipy/reference/sparse.html) | [pytorch](https://github.com/pytorch/pytorch) | [list](https://github.com/python/cpython) | [tuple](https://github.com/python/cpython) | [dict](https://github.com/python/cpython) And enables upgraded slicing functionality on its objects: ```python # Handles non-integer indexes for slicing. S(df)[:, ["Age", "Income"]] # Handles nested slicing in one call. S(nested_list)[..., :5] ``` It can also simultaneously slice many objects at once: ```python # Gets first elements of both objects. S(first=df, second=ar)[0, :] ``` This package has **0** dependencies. Not even one. ## Installation Python 3.6+ | Linux, Mac, Windows ```sh pip install slicer ``` ## Getting Started Basic anonymous slicing: ```python from slicer import Slicer as S li = [[1, 2, 3], [4, 5, 6]] S(li)[:, 0:2].o # [[1, 2], [4, 5]] di = {'x': [1, 2, 3], 'y': [4, 5, 6]} S(di)[:, 0:2].o # {'x': [1, 2], 'y': [4, 5]} ``` Basic named slicing: ```python import pandas as pd import numpy as np df = pd.DataFrame({'A': [1, 3], 'B': [2, 4]}) ar = np.array([[5, 6], [7, 8]]) sliced = S(first=df, second=ar)[0, :] sliced.first # A 1 # B 2 # Name: 0, dtype: int64 sliced.second # array([5, 6]) ``` Real example: ```python from slicer import Slicer as S from slicer import Alias as A data = [[1, 2], [3, 4]] values = [[5, 6], [7, 8]] identifiers = ["id1", "id1"] instance_names = ["r1", "r2"] feature_names = ["f1", "f2"] full_name = "A" slicer = S( data=data, values=values, # Aliases are objects that also function as slicing keys. # A(obj, dim) where dim informs what dimension it can be sliced on. identifiers=A(identifiers, 0), instance_names=A(instance_names, 0), feature_names=A(feature_names, 1), full_name=full_name, ) sliced = slicer[:, 1] # Tensor-like parallel slicing on all objects assert sliced.data == [2, 4] assert sliced.instance_names == ["r1", "r2"] assert sliced.feature_names == "f2" assert sliced.values == [6, 8] sliced = slicer["r1", "f2"] # Example use of aliasing assert sliced.data == 2 assert sliced.feature_names == "f2" assert sliced.instance_names == "r1" assert sliced.values == 6 ``` ## Contact us Raise an issue on GitHub, or contact us at interpret@microsoft.com